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We investigate the convective stability of a horizontal  layer  of a two-component binary mixture 
with internal heat re lease  whose intensity depends on the concentration of one of the components.  
We present  curves of neutral  stability and graphs of the amplitudes of cr i t ical  per turbat ions.  

We consider  a binary mixture ,  one of the components of which causes heat re lease.  Internal  sources  of 
heat depending on the concentration ("concentration" sources  of heat) can ar ise  in a mixture as a resul t  of p ro -  
cesses  of radioactive decay,  selective absorption of light, or exothermic chemical react ion of nonzero order .  
An example of a mixture with concentration heat sources  of radioactive type is the as thenospher ic  layer  of the 
mantle of the ear th  [1]. Internal  sources  with intensity depending on the concentration also a r i se  for the prop- 
agation of radiation in a layer  with an impurity having large light absorption [2]. In this case the energy ab-  
sorbed by an impurity can be converted into internal degrees  of f reedom,  as a resul t  of which there is rapid 
local heating near  the impurity. Finally the model of a mixture with concentration heat sources  gives a good 
descript ion of certain types of exothermic  chemical  p r o c e s s e s ,  operating with large thermal  effects in a 
strongly diluted reagent.  

Conditions of formation of convection in such sys tem should be noticeably different f rom those for an 
ordinary nonisothermal  binary mixture.  The difference is connected f i r s t  of all with the possibil i ty of diffu- 
sion redistr ibution of heat sources .  

We investigate the convective stability of an incompressible  binary mixture with concentration heat 
sources .  The mixture fills an infinite horizontal  layer  bounded by paral lel  i so thermal  planes z = 0 and z = d. 
On the lower boundary of the layer  there is a constant concentration of hea t - re leas ing  component C = C(~ on 
the upper boundary C = 0. We assume that the density of the mixture depends l inearly on the tempera ture  and 
concentration 

P = P0 (1 - -  [3iT - -  [32C), 

where/31 is the ordinary  coefficient of thermal  expansion, and ~2 = -1/O0(a0/SC)T,p determines  the dependence 
of the density on concentration. For  a light active component B2 > 0; ff the heat re lease  is due to the heavy 
component, then/3 2 < O. 

The sys tem of equations descr ibing the thermal-concentra t ion  convection in a binary incompressible  
mixture includes the equation of motion, the heat equation and diffusion equation, and the equation of con-  
tinuity [3]. The presence  of concentrat ion sources  of heat leads to the appearance in the heat equation of the 
additional t e rm 

Q c, 0-) 
p0cp 

which depends l inearly on the concentration of the active component, which cor responds ,  for example,  to the 
exothermic react ion of f i r s t  order .  In express ion (1), Q is the specific intensity of heat re lease  and ep is the 
specific heat. 

W i t h  account of (1) the equations of convection in the binary mixture in dimensionless var iables ,  a s sum-  
ing that the Boussinesq approximation is valid and that there is no thermal  diffusion or  diffusion heat conduc- 
tion, take the form 
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(2) 

In s y s t e m  (2) we use  the o rd inary  notation (C is the d imens ion less  concentrat ion of the h e a t - r e l e a s i n g  
component;  the unit vec to r  ~ is d i rec ted  ve r t i ca l ly  upward).  A s the units of m e a s u r e m e n t  of d is tance ,  t ime ,  
veloci ty ,  t e m p e r a t u r e ,  concentra t ion,  and p r e s s u r e  we choose the quanti t ies d, d2/v, )0/d, qd 2, C (~ and 
PoV• 2, where q = QC(~215 

The equations contain four  d imens ion less  p a r a m e t e r s :  R =gf~lqd 5/v• is the Rayleigh number ;  Rd = 
gfi2C(~215 its concentra t ion analog (the diffusion Rayleigh number) ;  P = v / x ,  the Prandt l  number ,  and Pd = 
v/D, the Schmidt number  (the diffusion Prandt l  number) .  

The boundar ies  of the l aye r  a re  a s s um e d  to be r igid and a re  maintained at the same  t e m p e r a t u r e  a s -  
sumed at the r e f e r ence  origin.  On the lower  boundary,  as has  a l ready  been noted, we a re  given a constant  
concentrat ion C = 1; on the upper  boundary the act ive component  is absent .  Thus ,  the ve loc i ty ,  t e m p e r a t u r e ,  
and concentrat ion sa t i s fy  the following boundary conditions: 

(3) 
for z = 0  v = 0 ,  T = O ,  C =  1; 

for z =  1 v = 0 ,  T = 0 ,  C = 0 .  

The boundary p rob l em  (2), (3) that  has  been fo rmula ted  has a s ta t ionary  solution cor responding  to m e -  
chanical  equi l ibr ium: 

v 0 = 0 ,  T 0 = z ( z  ~ - 3 z + 2 ) ,  C0= 1- -z .  (4) 

F r o m  the fo rm of the equi l ibr ium prof i l es  of the t e m p e r a t u r e  and concentrat ion (4) it follows that  in the l aye r  
there  a r e  regions  with potential ly unstable s t ra t i f ica t ion  of density,  which is due to the t e m p e r a t u r e  dis t r ibut ion,  and 
in the case  of a light act ive component  this is a l so  due to the dis t r ibut ion of concentrat ion.  

We invest igate  the s tabi l i ty  of the d is t r ibut ions  (4) with r e s p e c t  to the onset  of convection. In o rde r  to 
do this we cons ider  the behavior  of the smal l  no rma l  pe r tu rba t ions  ~exp [-Xt + i(ktx + k2y)], where  X = Xr + iXi; 
Xr is the r ea l  pa r t  and Xi is the imaginary  pa r t  of the d e c r e m e n t  X. 

Af ter  l inear iza t ion  of the initial s y s t e m  (2) with r e s p e c t  to the smal l  pe r tu rba t ions  of ve loc i ty ,  of t e m -  
p e r a t u r e ,  and of concentra t ion ,  and e l iminat ion of the p r e s s u r e ,  we obtain for  the i r  ampl i tudes  w(z), 0(z), ~(z), 
a s y s t e m  of o rd inary  homogeneous di f ferent ia l  equations 

- -  X (w" - -  k2w) = (w TM - -  2k2w " + k'w) - -  Rk~O - -  R~k~I, 

- -  ~PO = (0" - -  k~O) + 6~l--wTo, (5) 

~Cg. 

H e r e  k 2 = q + 

The boundary conditions for  w,  0, and ~ in accordance  with (3) have the f o r m  

w = w ' = 0 = ~ l = 0  for z = 0 ;  1. (6) 

F o r  Pd = P and R = 0 the p rob lem (5), (6) is turned into a concentrat ion analog of the known Rayleigh 
p rob lem.  Fo r  the case  Pd = 0, Eqs.  (5) with boundary conditions (6) descr ibe  the fo rmat ion  of convection in a 
l a y e r  with l inear ly  d is t r ibuted  internal  sources  of heat  [4]. F o r  fixed concentrat ion of the act ive component 
(Co = const) fo r  Pd = 0, the p rob lem (5), (6) r educes  to the p rob lem of the s tabi l i ty  of a liquid with homogeneous 
heat  r e l e a s e ,  which was cons idered  in [5] for  a t h e r m a l l y  insulated lower  boundary.  

The d e c r e m e n t s  X(P, Pd,  R,  R d, k) a r e  e igenvalues  of the spec t r a l  p rob lem (5), (6), and the ampli tudes  
of the pe r tu rba t ions  a re  its eigenfunctions.  

F o r  the solut ion,  the s y s t e m  of equations for  the complex ampli tudes  w,  0, and T/ was reduced to a s y s -  
t em of 16 rea l  f i r s t - o r d e r  equations for  the r ea l  and imaginary  pa r t s  of the functions w, w ' ,  w" ,  w ~ , 0, 0", 
~, and ~ ' .  The R u n g e - K u t t a - - M e r s o n  method [61 was used to cons t ruc t  four l inear ly  independent pa r t i cu la r  
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Fig. 1. Curves of neutral  stability for  
var ious  values of Rd: a) L = 0.5; b) 2.0. 

solutions, sat isfying the boundary conditions at the initial point of integration. The requirements  of the ex i s -  
tence of a nontrivtal solution of the problem and satisfaction of the boundary conditions at the final point of the 
interval of integration lead to a charac te r i s t i c  relat ion,  de termining both par ts  of the complex decrement  k. 
A fundamental resul t  of the calculations is the finding of the spect rum of the decrements  as a function of all 
the pa ramete r s .  The values k r > 0 correspond to damping of the per turbat ions,  and kr < 0 cor respond  to 
growth; the stability boundary is determined by the condition kr = 0. 

The modification of the Runge-Kut t a  method that is used enables us to effectively ca r ry  out a s t ep -by-  
step verif icat ion of the accuracy  of the integration of the equations. As a control example for  Pd = P and R = 
0 we determined the minimum cri t ical  quantity Rd. for  the concentration Rayleigh problem,  the value of which 
Rd. = 1707.762 completely coincides with that given in [3]. 

We turn to a discussion of the resul ts  obtained. 

It is known that in binary sys tems under specific conditions it is possible to have increas ing vibrational  
perturbat ions with k i ~ 0. However for the problem under consideration a numerical  analysis  of the stability 
shows that monotonic perturbat ions lead to a c r i s i s  of the equilibrium. The boundary of the stability in this 
case is determined by the condition k = 0 and, as can be seen f rom Eqs. (5), it depends only on the rat io Pd/P, 
which is called the Lewis number L = y./D. We note that the dependence of the boundary of the monotonic in- 
stability on the Lewis number ,  which is absent in ordinary thermal-concent ra t ion  convection, is connected 
with the presence  of concentration sources  of heat. The major i ty  of the calculations were car r ied  out for  L in 
the interval 0 < L < 4, corresponding to typical values of the Lewis number for  gas mixtures .  

Figure la  and b represen ts  examples of families of Curves of neutral  stability R(k) for L = 0.5 and L = 
2.0 f o r v a r i o u s  values of the diffusion Rayleigh number Rd. Positive R d correspond to the case when the active 
component is l ighter ,  and negative R d denote that the heat re lease  is due to the heavy component of the mix-  
ture. An increase inlRd]in  the region R d < 0 corresponds  to an increase in the density of the medium, and for  
Rd > 0 it corresponds  to its decrease  near  the lower boundary of the layer.  Thus,  for  all Lewis numbers  for 
Rd < 0 the inhomogeneities in concentration show a stabilizing action on the convective stabili ty,  and for  R d > 0 
they show a destabilizing action. For  Rd = 0, the variat ions in density are connected only with the t empera -  
ture gradients.  The corresponding neutral  curves (R d = 0) in Fig. 1 determine the threshold of convection in 
the case of a thermal  mechanism of instability, complicated by diffusion redistr ibution of the heat sources .  

For  sufficiently large values of R d > 0 the equilibrium of the mixture can prove to be unstable also 
in the absence of internal heat re lease  (isothermal mixture R = 0). The minimum cri t ical  value Rd.  for a pure 
concentration problem is determined f rom the equation 

Rd.L = 1707.762. (7) 

(The dependence of Rd.  on the Lewis number is connected with the choice of the units of measurement  of the 
var iables ,  convenient for  analysis of the resul ts  in the general  case.) 

The neutral  curves R(k) have minima R.(k.). F o r  R d > Rd, they lie in the region of negative R, which 
in the assumed model of the medium correspond to absorption of heat (these parts  of the neutral  curves on 
Fig. 1 are  denoted by dashes). 
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Fig. 2. Dependence of minimum cr i t ical  value 
of Rayleigh number  R ,  on L for  var ious Rd. 
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Fig. 3. Graphs of the amplitudes of the neutral  per turbat ions of velocity (a), of the t e m -  
pera ture  (b), and of concentra t ion (c). 1) L = 2.0; R = 0; R d = 900; k = 3.0; 2) 0; 7040; 0; 
3.5; 3) 0.5; 4590; 0; 2.8; 4) 0.5; 8000; -3000 ;  2.8. 

For  L < 1 the wave numbers  of the cr i t ical  perturbat ions k, with increase in R d pract ical ly  do not vary  
and have the value k, ~ 3. For  Lewis numbers  L > 1 the minimum on the neutral  curves with increase in R d 
is shifted in the direct ion of short -wave per turbat ions ,  where the value of the perturbat ion depends on the value 
of L. 

Analysis  of the stability of binary mixtures  can conveniently be carr ied  out on diagrams showing the de-  
pendence of the minimum value of one of the Rayleigh numbers  on the remaining pa ramete r s  of the problem. 
Such a stability d iagram in (R,, L) coordinates is shown in Fig. 2. The zones of instability are found over the 
R,(L) curves.  The rec iproca l  a r rangement  of the stability lines on the (R,, L) plane is determined by the dif- 
fusion Rayleigh number R d. As has already been noted, with increas ing IRdl for  R d < 0 the stability of the mix-  
ture inc reases ,  and for Rd > 0 it dec reases .  For  Rd = 0 the concentration strat if icat ion is absent and the 
R.(L) descr ibes  the formation of an instability in the layer  with inter ior  heat sources ,  the inhomogeneities in 
the distribution of which can be equalized owing to the diffusion. 

For  positive values of the diffusion Rayleigh number ,  the charac te r i s t i cs  R.(L) in tersect  the axis R.  = 0 
at points determining the instabili ty,  caused by concentration gradients.  The coordinates of these points are 
determined,  evidently, by Eq. (7). For  R d = 1708 (the dashed curve) R ,  = 0 for  L = 1. 

All the curves of stability R,(L) begin at L = 0 at the same point R,  = 7025, which determines  the equilib- 
r ium cr is is  in the layer  with inhomogeneous inter ior  heat re lease .  F r o m  the figure we see that for  R d > -2000  
the fluctuations of density of the inter ior  sources  for all L decrease  the stability. The speed of decrease  of the 
cr i t ical  Rayleigh number decreases  with increas ing Lewis number.  For  values R d < -2000  the stability lines 
represen t  nonmonotonic curves :  for L < 1 (X < D) R.  increases  with increasing L and for L > 1 it decreases .  
Thus,  depending on the values of the pa r ame te r s  R d and L the migrat ion of internal heat sources  can affect 
the convective stability of equilibrium in various ways.  

Together  with the calculation of the threshold Rayleigh numbers  for investigation of convective instability 
we are  also interested in determining the fo rm of the cr i t ical  perturbations.  For  small supercr i t ica l i ty  the 
generated convective motion should be s imi lar  in form to perturbat ions responsible for the equilibrium cr is is .  
For  finding them it is neces sa ry ,  besides the eigenvalues,  to seek the eigenfunctions w, 8, and ~ of the prob-  
lem (5), (6). These functions were constructed in the form of a l inear combination of the corresponding four 
par t icu lar  solutions. The coefficients of the expansion were  determined from a solution of the homogeneous 
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sys tem of a lgebraic  equations for  the condition of the vanishing of its determinant.  One of the four coefficients 
is a rb i t r a ry  and gives the normalizat ion of the perturbations.  In the case of a monotonic instability (k = Xr) 
the eigenfunctions prove to be real.  

Figure 3 represents  the amplitudes of the neutral  perturbations of velocity (a), of temperature  (b), and 
of concentration (c) for  charac te r i s t i c  values of the pa ramete r s .  The amplitudes found enable us to construct  
i so therms,  lines of constant concentration and distribution of the ver t ical  component of velocity for  a convec-  
tive cell. For  the concentrat ion analog of the Rayleigh problem (R = 0, curve 1) the distributions w and 77, just  
as was to be expected, are  symmet r i c  with respec t  to the middle layer.  The curves 2 re fer  to the other l imi t -  
ing case - pure thermal  instability (L = 0, Rd = 0) with equilibrium profile of tempera ture  To, shown in Fig. 3b 
by the dashed line. F r o m  the form of the distributions w and 0 (7 = 0) it follows that the generated convective 
motion is real ized pract ica l ly  in the entire layer  (penetrating convection); in this case the tempera ture  p e r -  
turbations are  mainly localized in the zone of unstable thermal  stratification. It is interest ing to note that the 
amplitude of the tempera ture  perturbation near  the lower boundary of the layer  changes sign. 

A comparison of the curves 2 and 3 (L = 0.5, Rd = 0) shows that diffusion of the inter ior  sources  changes 
not only the cr i t ical  Rayleigh number,  but also the form of the neutral  perturbat ions.  

An example of the graphs of the perturbat ion amplitudes in the general case of a thermal  concentration 
convection is represented by the curves 4. An analysis of the eigenfunctions of the problem obtained for v a r i -  
ous values of the pa rame te r s  shows that the cr i t ical  perturbations of velocity and of concentration exist  in the 
entire layer ;  the region of tempera ture  per turbat ions  is broadened with an increase  in the Lewis number.  

In conclusion we note that the problem of the stability of equilibrium of a horizontal  layer  of a h e a t - r e -  
leasing binary mixture with maximum concentration of active component on the upper  boundary does not reduce 
to the problem considered above and requires  additional investigation. 
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is the velocity;  
is the. tempera ture  measured  f rom the temperature  of the boundary; 
are  the concentration of the hea t - re leas ing  component and its value on the lower boundary; 
are the equil ibrium values of the variables  of the problem; 
is the convective contribution to the p r e s s u r e ;  
is the t ime; 
is the thickness of the layer ;  
are  the Cartesian coordinates;  
is the unit vector  directed ver t ical ly  upward; 
are  the coefficients determining the dependence of the density on the tempera ture  and 
concentration; 
is the specific power of heat re lease ;  
~s the heat capacity at constant p ressure ;  
is the coefficient of thermal  diffusivity; 
as the kinematic viscosi ty;  
Is the diffusion coefficient; 
as the Rayleigh number;  
is the diffusion Rayleigh number;  
is the Prandtl  number;  
is the Schmidt number;  
are  the amplitudes of normal  perturbat ions of Velocity, t empe ra tu r e '  and concentration; 
is the decrement  of per turbat ions;  
are  the wave numbers charac ter iz ing  the periodicity of the perturbations along the x and 
y axes; k 2 = k} + k~. 
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DESIGN OF SUBMERGED TURBULENT JETS OF 

OF DIFFERENT DENSITIES 

G A S E S  

V.  A.  G o l u b e v  UDC 532.525.2 

We p resen t  resul t s  of a theore t ica l  and exper imenta l  investigation of submerged gas je ts  in the 
of density var ia t ions  (Pj/Pe = 0.05-10). range 

A large number of studies [1-9] have been devoted to an investigation of the fea tures  of the propagation 
of submerged je ts .  Below, an a t tempt  is made to general ize the available exper imenta l  data [2, 5, 8] fo r  jets  
of var ious densi t ies  and to calculate cer ta in  cha rac te r i s t i c s  of such jets .  

F o r  construct ion of the graphs (Fig. 1) we assumed the jets to be a point source  placed at the pole with 
initial momentum equal to kj (kj = pju2Fi).j~ The distance to the pole Xp was found f rom the construct ion of the 
prof i les  pu 2, u, and AT or c at var ious  dis tances f rom the nozzle at the x t - r  plane following the drawing of 
the s t ra ight  lines passing through the points at which the veloci ty head,  the veloci ty ,  and the excess  t empe ra -  
ture or concentrat ion at each cross  section of the je t  aTttained half of their  maximum (on the je t  axis) value,  
i .e . ,  we constructed the s t ra ight  lines rq.5, r u and originating f rom a single point - the pole [5]. 0.5, r0.5, 

From Fig. 1 we see that the width of the profiles pu 2, u, and AT increase with decreasing density of the 
jet and dimensionless profiles of the excess temperatures ~T/AT m and the concentrations c/c m coincide [5]. 
In this case with an accuracy that is acceptable in practice the velocity distribution over transverse cross sec- 
tions of the indicated jets is described by the theoretical profile 

um~--~-~ = [ 1 - -  (0.44 ~jr/x~ ~3/212j ' (1) 

and the distr ibution of the excess  t empera tu re s  or  concentrat ions is descr ibed  by a profi le  which can be wri t ten 
a s  

ATr~ c~ [ . r , ~ l  ro.jXi ] j 

In Eqs. (1) and (2) the ra t ios  of the ha l f -maximum values of the t r ansve r se  coordinates ,  the v e l o c i t y  and the 
t empera tu re ,  rU.5 and rT5 to thei r  l imiting values r u and r T l im l im are  the same for  all je ts :  

r~_o% = 0.44, r~ -~ ----- 0.44. (3) 
ru ~- lira lim 

u = rU.Jxt and the The change in the coefficient  of the half-width of the jet  with respec t  to the veloci ty Co. 5 
t empera tu re  CoT5 = rTs/xl as a function of the re la t ive  density of the jet  Pj/Pe a re  shown in Fig. 2. In this f igure 
we show the var ia t ion of the coefficient  of the half-width of the je t  with respec t  to the velocity head cq.5 = r q . /  
x1. 

The distr ibution of pu2/pmU2 m in cross  sect ions of the i so thermal  je t  of a i r  Pj/Pe = 1.0 (Fig. 1) c o r r e s -  
ponds to the theore t ica l  profi le  obtained f rom Eq. (1): 
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