CONVECTIVE INSTABILITY OF A MIXTURE WITH
CONCENTRATION HEAT SOURCES

A, K, Kolesnikov and V. I. Yakushin UDC 536,532.72:536,25

We investigate the convective stability of a horizontal layer of a two-component binary mixture
with internal heat release whose intensity depends on the concentration of one of the components,
We present curves of neutral stability and graphs of the amplitudes of critical perturbations.

We consider a binary mixture, one of the components of which causes heat release., Internal sources of
heat depending on the concentration ("concentration" sources of heat) can arise in a mixture as a result of pro-
cesses of radioactive decay, selective absorption of light, or exothermic chemical reaction of nonzero order.
An example of a mixture with concentration heat sources of radioactive type is the asthenospheric layer of the
mantle of the earth [1]. Internal sources with intensity depending on the concentration also arise for the prop-
agation of radiation in a layer with an impurity having large light absorption [2]. In this case the energy ab-
sorbed by an impurity can be converted into internal degrees of freedom, as a result of which there is rapid
local heating near the impurity. Finally the model of a mixture with concentration heat sources gives a good
description of certain types of exothermic chemical processes, operating with large thermal effects in a
strongly diluted reagent.

Conditions of formation of convection in such system should be noticeably different from those for an
ordinary nonisothermal binary mixture., The difference is connected first of all with the possibility of diffu-
sion redistribution of heat sources.

We investigate the convective stability of an incompressible binary mixture with concentration heat
sources, The mixture fills an infinite horizontal layer bounded by parallel isothermal planes z = 0 and z = d.
On the lower boundary of the layer there is a constant concentration of heat-releasing component C = C(o); on
the upper boundary C = 0. We assume that the density of the mixture depends linearly on the temperature and
concentration

p = Po (1L — P17 — B:C),
where B is the ordinary coefficient of thermal expansion, and 8, = —1/p4(99/0C)T p determines the dependence
of the density on concentration. For a light active component 8, > 0; if the heat release is due to the heavy
component, then 8, < 0,

The system of equations describing the thermal-concentration convection in a binary incompressible
mixture includes the equation of motion, the heat equation and diffusion equation, and the equation of con-
tinuity [3]. The presence of concentration sources of heat leads to the appearance in the heat equation of the
additional term

Q c,
Pon
which depends linearly on the concentration of the active component, which corresponds, for example, to the

-exothermic reaction of first order. In expression (1), Q is the specific intensity of heat release and cp is the
specific heat.

1)

-With account of (1) the equations of convection in the binary mixture in dimensionless variables, assum-
ing that the Boussinesq approximation is valid and that there is no thermal diffusion or diffusion heat conduc-
tion, take the form

1 .
‘;_‘;T - W)V = —yp + A + (RT + RO,
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P—al —I—va = AT -} 6C,
ot 2)
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In system (2) we use the ordinary notation (C is the dimensionless concentration of the heat-releasing
component; the unit vector ¥ is directed vertically upward). As the units of measurementof distance, time,
velocity, temperature, concentration, and pressure we choose the quantities d, d¥v, x/d, qdz, C("), and
px/d?, where q = QC(O)/6pcpx

The equations contain four dimensionless paramefers: R= gBiqu /vx is the Rayleigh number; Rg =
g4 c® d®fvy, its concentration analog (the diffusion Rayleigh number); P = v/, the Prandtl number, and Py =
v/D, the Schmidt number (the diffusion Prandtl number).

The boundaries of the layer are assumed to be rigid and are maintained at the same temperature as-
sumed at the reference origin. On the lower boundary, as has already been noted, we are given a constant
concentration C = 1; on the upper boundary the active component is absent., Thus, the velocity, temperature,
and concentration satisfy the following boundary conditions:

fr z=0v=0,T=0C=1;
3)
for z=1v=0, T=0, C=0.

The boundary problem (2), (3) that has been formulated has a stationary solution corresponding to me-
chanical equilibrium:

V=0, To=2(2—32+2), Co=1—2z (4)

From the form of the equilibrium profiles of the temperature and concentration (4) it follows that in the layer
there are regions with potentially unstable stratification of density, which is due to the temperature distribution, and
in the case of a light active component this is also due to the distribution of concentration.

We investigate the stability of the distributions (4) with respect to the onset of convection. In order to
do this we consider the behavior of the small normal perturbations ~exp [-At + i(kyx + kyy)}], where A = Ay + iAj;
Ay is the real part and A is the imaginary part of the decrement A.

After linearization of the initial system (2) with respect to the small perturbations of velocity, of tem-
perature, and of concentration, and elimination of the pressure, we obtain for their amplitudes w(z), 6(z), n(z),
a system of ordinary homogeneous differential equations

—A(w" — B*w) = (w!V — 2k%0" k“w) RR20 — R k%,
—APB = (8" — k20) + 6n—w T,

(5)
" Pd ’
— AP = (o — k) — —F wC.
Here K =Kk + K.
The boundary conditions for w, 8, and n in accordance with (3) have the form
W=w =0=n=0 for z=0; 1. (6)

For Pq =P and R = 0 the problem (5), (6) is turned into a concentration analog of the known Rayleigh
problem. For the case Pq = 0, Egs. (5) with boundary conditions (6) describe the formation of convection in a
layer with linearly distributed internal sources of heat [4]. For fixed concentration of the active component
(Cy = const) for Py = 0, the problem (5), (6) reduces to the problem of the stability of a liquid with homogeneous
heat release, which was considered in [5] for a thermally insulated lower boundary.

The decrements A (P, P4, R, Rq, k) are eigenvalues of the spectral problem (5), (6), and the amplitudes
of the perturbations are its eigenfunctions,

For the solution, the system of equations for the complex amplitudes'w, 6, and n was reduced to a sys-
tem of 16 real first-order equations for the real and imaginary parts of the functions w, w', w", w™, 6, o",
7, and 7', The Runge —Kutta —Merson method [6] was used to construct four linearly independent particular
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Fig. 1, Curves of neutralvstabil‘ity for
various values of Rg: a) L. = 0.5; b) 2.0,

solutions, satisfying the boundary conditions at the initial point of integration. The requirements of the exis-
tence of a nontrivial solution of the problem and satisfaction of the boundary conditions at the final point of the
interval of integration lead to a characteristic relation, determining both parts of the complex decrement A,
A fundamental result of the calculations is the finding of the spectrum of the decrements as a function of all
the parameters. The values Ay > 0 correspond to damping of the perturbations, and Ay < 0 correspond to
growth; the stability boundary is determined by the condition Ay = 0,

The modification of the Runge —Kutta method that is used enables us to effectively carry out a step-by-
step verification of the accuracy of the integration of the equations. As a control example for Pq =P and R =
0 we determined the minimum critical quantity Rq, for the concentration Rayleigh problem, the value of which
Ry, =1707.762 completely coincides with that given in [3].

We turn to a discussion of the results obtained.

It is known that in binary systems under specific conditions it is possible to have increasing vibrational
perturbations with Aj # 0. However for the problem under consideration a numerical analysis of the stability
shows that monotonic perturbations lead to a crisis of the equilibrium. The boundary of the stability in this
case is determined by the condition A = 0 and, as can be seen from Egs. (5), it depends only on the ratio Pgy/P,
which is called the Lewis number L = x/D. We note that the dependence of the boundary of the monotonic in-
stability on the Lewis number, which is absent in ordinary thermal-concentration convection, is connected
with the presence of concentration sources of heat, The majority of the calculations were carried out for L in
the interval 0 < L < 4, corresponding to typical values of the Lewis number for gas mixtures.

Figure la and b represents examples of families of curves of neutral stability R (k) for L = 0.5 and L =
2.0 for various values of the diffusion Rayleigh number Rq. Positive Rq correspond to the case when the active
component is lighter, and negative Rq denote that the heat release is due to the heavy component of the mix-
ture., An increase in|Rq}in the region Ry < 0 corresponds to an increase in the density of the medium, and for
Rq > 0 it corresponds to its decrease near the lower boundary of the layer. Thus, for all Lewis numbers for
Rq < 0 the inhomogeneities in concentration show a stabilizing action on the convective stability, and for Rq > 0
they show a destabilizing action. For Rd = 0, the variations in density are connected only with the tempera-
ture gradients. The corresponding neutral curves (Rgq = 0) in Fig.1 determine the threshold of convection in
the case of a thermal mechanism of instability, complicated by diffusion redistribution of the heat sources.

For sufficiently large values of Rq > 0 the equilibrium of the mixture can prove to be unstable also
in the absence of internal heat release (isothermal mixture R = 0), The minimum critical value Rg+ for a pure
concentration problem is determined from the equation

Ry.L = 1707.762. (N

(The dependence of Rg« on the Lewis number is connected with the choice of the units of measurement of the
variables, convenient for analysis of the results in the general case.)

The neutral curves R (k) have minima R,(k). For Ry > Ry« they lie in the region of negative R, which
in the assumed model of the medium correspond to absorption of heat (these parts of the neutral curves on
Fig.1 are denoted by dashes).
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Fig. 3. Graphs of the amplitudes of the neutral perturbations of velocity (a), of the tem-~
perature (b}, and of concentration (¢). 1) L =2,0; R = 0; Rq = 900; k = 3,0; 2) 0; 7040; 0;
3,53 3) 0,5; 4590; 0; 2.8; 4) 0.5; 8000; —3000; 2.8.

For L < 1 the wave numbers of the critical perturbations k, with increase in Rq practically do not vary
and have the value k. ¥3. For Lewis numbers L > 1 the minimum on the neutral curves with increase in Ry
is shifted in the direction of short-wave perturbations, where the value of the perturbation depends on the value
of L.

Analysis of the stability of binary mixtures can conveniently be carried out on diagrams showing the de-
pendence of the minimum value of one of the Rayleigh numbers on the remaining parameters of the problem,
Such a stability diagram in (R,, L) coordinates is shown in Fig.2, The zones of instability are found over the
R«(L) curves. The reciprocal arrangement of the stability lines on the ®,, L) plane is determined by the dif-
fusion Rayleigh number Rq. As has already been noted, with increasing |Rd|for Rq < 0 the stability of the mix-
ture increases, and for Rq > 0 it decreases. For Rq = 0 the concentration stratification is absent and the
R_ (L) describes the formation of an instability in the layer with interior heat sources, the inhomogeneities in
the distribution of which can be equalized owing teo the diffusion.

For positive values of the diffusion Rayleigh number, the characteristics R,(L) intersect the axis R, = 0
at points determining the instability, caused by concentration gradients. The coordinates of these points are
determined, evidently, by Eq. (7). For Rq = 1708 (the dashed curve) Ry = 0 for L =1,

All the curves of stability R, (L) begin at L = 0 at the same point R, = 7025, which determines the equilib-
rium crisis in the layer with inhomogeneous interior heat release. From the figure we see that for Ry > —2000
the fluctuations of density of the interior sources for all L decrease the stability. The speed of decrease of the
critical Rayleigh number decreases with increasing Lewis number. For values Rgq < —2000 the stability lines
represent nonmonotonic curves: for L <1 (x < D) R, increases with increasing L and for L > 1 it decreases,
Thus, depending on the values of the parameters Rg and L the migration of internal heat sources can affect
the convective stability of equilibrium in various ways.

Together with the calculation of the threshold Rayleigh numbers for investigation of convective instability
we are also interested in determining the form of the critical perturbations. For small supercriticality the
generated convective motion should be similar in form to perturbations responsible for the equilibrium crisis.
For finding them it is necessary, besides the eigenvalues, to seek the eigenfunctions w, 6, and 5 of the prob-
lem (5), (6). These functions were constructed in the form of a linear combination of the corresponding four
particular solutions, The coefficients of the expansion were determined from a solution of the homogeneous
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system of algebraic equations for the condition of the vanishing of its determinant, One of the four coefficients
is arbitrary and gives the normalization of the perturbations. In the case of a monotonic instability (A = Ay)
the eigenfunctions prove to be real.

Figure 3 represents the amplitudes of the neutral perturbations of velocity (a), of temperature (b), and
of concentration (¢) for characteristic values of the parameters, The amplitudes found enable us to construct
isotherms, lines of constant concentration and distribution of the vertical component of velocity for a convec-
tive cell. For the concentration analog of the Rayleigh problem (R = 0, curve 1) the distributions w and 7, just
as was to be expected, are symmetric with respect to the middle layer. The curves 2 refer to the other limit-
ing case — pure thermal instability (L = 0, Rd = 0) with equilibrium profile of temperature T;, shown in Fig. 3b
by the dashed line, From the form of the distributions w and ¢ (n = 0) it follows that the generated convective
motion is realized practically in the entire layer (penetrating convection); in this case the temperature per-
turbations are mainly localized in the zone of unstable thermal stratification. It is interesting to note that the
amplitude of the temperature perturbation near the lower boundary of the layer changes sign.

A comparison of the curves 2 and 3 (L = 0.5, Rd = 0) shows that diffusion of the interior sources changes
not only the critical Rayleigh number, but also the form of the neutral perturbations.

An example of the graphs of the perturbation amplitudes in the general case of a thermal concentration
convection is represented by the curves 4. An analysis of the eigenfunctions of the problem obtained for vari-
ous values of the parameters shows that the critical perturbations of velocity and of concentration exist in the
entire layer; the region of temperature perfurbations is broadened with an increase in the Lewis number.

In conclusion we note that the problem of the stability of equilibrium of a horizontal layer of a heat-re-
leasing binary mixture with maximum concentration of active component on the upper boundary does not reduce
to the problem considered above and requires additional investigation.

NOTATION
v is the velocity;
T : is the temperature measured from the temperature of the boundary;
C and c( are the concentration of the heat-releasing component and its value on the lower boundary;
vg» T, and C, are the equilibrium values of the variables of the problem;
) is the convective contribution to the pressure;
t is the time;
d is the thickness of the layer;
X, y, and z are the Cartesian coordinates;
4% is the unit vector directed vertically upward;
B4 and B, ) are the coefficients determining the dependence of the density on the temperature and
' L concentration;
Q : is the specific power of heat release;
cp is the heat capacity at constant pressure;
X is the coefficient of thermal diffusivity;
Y is the kinematic viscosity;
D is the diffusion coefficient;
R is the Rayleigh number;
Rg is the diffusion Rayleigh number;
P is the Prandtl number;
Py is the Schmidt number;
w, 8, and are the amplitudes of normal perturbations of velocity, temperature, and concentration;
A is the decrement of perturbations;
k; and k, are the wave numbers characterizing the periodicity of the perturbations along the x and

y axes; kK = kf + ki,
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DESIGN OF SUBMERGED TURBULENT JETS OF GASES
OF DIFFERENT DENSITIES

V. A. Golubeyv UDC 532.525.2

We present results of a theoretical and experimental investigation of submerged gas jets in the
range of density variations (Pj/Pe = 0.05-10).

A large number of studies [1-9] have been devoted to an investigation of the features of the propagation
of submerged jets. Below, an attempt is made to generalize the available experimental data [2, 5, 8] for jets
of various densities and to calculate certain characteristics of such jets,

For construction of the graphs (Flg 1) we assumed the jets to be a point source placed at the pole with
initial momentum equal fo k (k u F.). The distance to the pole x, was found from the construction of the
profiles pu?, u, and AT or c at varmus Alstances from the nozzle at the x; —r plane following the drawing of
the straight lines passing through the points at which the velocity head, the velocity, and the excess tempera-
ture or concentration at each cross section of the jet attained half of their maximum (on the jet axis) value,
i.e., we constructed the straight lines rf,l_ 59 rh‘, 5, and ry 5, originating from a single point — the pole [5].

From Fig.1 we see that the width of the profiles pu®, u, and AT increase with decreasing density of the
jet and dimensionless profiles of the excess temperatures AT/ATy, and the concentrations ¢/cy coincide [5].
In this case with an accuracy that is acceptable in practice the velocity distribution over transverse cross sec-
tions of the indicated jets is described by the theoretical profile

u o rlx, \3/272
;m—w[1~(o.44 r:;j/xi) ] , )

and the distribution of the excess temperatures or concentrations is described by a profile which can be written
as

_°c _ 1_*(0‘44 Tr/xi 3/2 2. @)
ATy, Cm r0.5/'x1

In Eqgs. (1) and (2) the ratios of the half-maximum values of the transverse coordinates, the velocity and the

temperature, rk‘.5 and r’°]:5 to their limiting values r‘i‘ and rhm are the same for all jets:
re rT
02 =044, 35 =0.44. 3)
ri.
lim lim

The change in the coefficient of the half-width of the jet with respect to the velocity C;lf, =Ty, 5/ %1 and the
temperature C;r 5= r;r /%4 a8 a function of the relative density of the jet p_,/ Peare shown in Fig, 2, Inthis flgure '
we show the variation of the coefficient of the half-width of the jet with respect to the velocity head C0 5=T,, E/
X1.

The distribution of puz/pmum in cross sections of the isothermal jet of air pJ/pe =1,0 (Fig. )corres—
ponds to the theoretical profile obtained from Eq. (1):

S. Ordzhonikidze Moscow Aeronautics Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol,
36, No. 4, pp. 715-720, April, 1979, Original article submitted July 18, 1978,
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